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Abstract

In this paper, a numerical-experimental study of the overall dynamical response of elevated spherical tanks subjected

to horizontal base motion is presented. The main objective is to gain insight in the physical response of this particular

structural typology widely used in the petrochemical industry as liquefied petroleum gas (LPG) containers. In order to

identify the natural frequencies of the modes that mainly contribute to the response, experimental free vibration tests on

an elevated spherical tank model for different liquid levels were carried out. Next, a numerical model that takes into

account the coupling between fluid and structure was developed and validated against the experimental results. A very

good agreement between experimental and numerical results was obtained. The results obtained show the influence of

liquid levels on natural frequencies and indicate that the sloshing has a significant effect on the dynamical characteristics

of the analyzed system. In order to obtain a good representation of the overall dynamical behaviour of the system by

means of a simplified lumped mass model, a minimum of three masses is suggested. Finally, appropriate names of these

three masses are proposed in the present paper.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamical behaviour of elevated liquid storage containers is mainly studied because of the interest in their

response to seismic loads (e.g., in petrochemical industry) or in the connection with the structural integrity and

reliability analysis of diverse shell components (e.g., in nuclear reactors).

In the last five decades, many researchers have considered the topic of dynamical behaviour of liquid-filled tanks,

mainly on cylindrical and rectangular storage tanks. A significant amount of experimental and theoretical effort has

been invested on studies concerned with the understanding and predicting the seismic behaviour of ground-supported

cylindrical tanks. One of the principal works was published in the early 1960s by Housner (1963), who considered

ground-supported cylindrical rigid tanks subjected to horizontal translation, and suggested that the dynamical response

can be idealized as the contribution of an impulsive (bulging) mass rigidly attached to the container wall and a sloshing
e front matter & 2009 Elsevier Ltd. All rights reserved.
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mass (convective) that is connected to the wall by means of springs. The impulsive component was attributed to the part

of the liquid that vibrates jointly with the tank, while the sloshing component, which was characterized by long-period

oscillations, corresponds to the liquid around of the free surface. To represent these effects, Housner (1963) considered

a model with two uncoupled masses and developed equations to compute the impulsive and sloshing liquid masses,

along with their location above the tank base and the stiffness of the convective mass spring. Although, for practical

design, only one convective mass is commonly considered, additional lumped-masses may also be included (Bauer,

1964; Livao�glu and Do�gangün, 2006). For this type of tank, Haroun and Housner (1981) developed a three-mass model

that takes the tank-wall flexibility into account. Other works concerning the natural modes and frequencies of clamped-

free vertical cylindrical storage tanks by means of experimental and numerical approaches are reported by Chiba et al.

(1985), Mazuch (1996), Chiba (1992, 1993, 1994), by analytical procedures Tang (1994), Han and Liu (1994), and using

a FE formulation by Gonc-alves and Ramos (1996), Cho et al. (2001) and Virella et al. (2006).

With regard to dynamical analysis of ground-supported rectangular tanks, several works have been reported using

numerical methods, such as Do�gangün et al. (1996) and Kianoush and Chen (2006), while Koh et al. (1998) and

Faltinsen et al. (2005) included experimental tests. A recent work by Livao�glu (2008), evaluates the dynamical

behaviour of fluid–rectangular-tank–soil–foundation system with a simple seismic analysis procedure, based on

Housner’s two-mass approximations. Other investigations on soil–fluid–structure interaction effects for laterally excited

tanks have been reported by Veletsos and Tang (1990) and Rammerstorfer et al. (1990).

The sloshing in this type of container has attracted some interest too (Chount and Yun, 1996; Faltinsen and

Timokha, 2002; Faltinsen et al., 2003; Celebi and Akyildiz, 2002; Papaspyrou et al., 2004), as well as for applications in

tuned liquid dampers to mitigate the dynamical response of structures subjected to horizontal base excitations

(Frandsen, 2005; Tait et al., 2005). The publication of Ibrahim et al. (2001) offers a broad overview of sloshing

dynamics, including both linear and nonlinear analysis, with emphasis on vertical cylindrical and rectangular tanks.

However, containers of other geometries, such as spheres, have received little attention, despite the fact that they have

several industrial applications. The effects of liquid sloshing in spherical containers were studied, for example, by

McIver (1989), Evans and Linton (1993), McIver and McIver (1993) and Papaspyrou et al. (2003, 2004). Moreover, two

recent studies that develop a mathematical model for calculating linear sloshing effects in the dynamical response of

horizontal cylindrical and spherical liquid containers under earthquake excitation were presented by Karamanos et al.

(2006) and Patkas and Karamanos (2007).

On the other hand, the amount of works concerning seismic behaviour of elevated tanks is quite limited, compared

with the large number of publications on ground-supported containers (Haroun and Ellaithy, 1985; Rai, 2002). An

important work that describes the dynamical behaviour of a water tower by a continuous model was attributed to

Dieterman (1986). From this approach, the author derived analytically a coupled lumped-impedance model of liquid-

support structure system, which was confirmed by several measurements. Similarly, Dieterman (1993) proposed a

complementary model by which the effects of liquid and foundation on the structural dynamics can be evaluated

integrally. By a sensitivity study, the work provides valuable evidence for the influence of liquid and soil parameters on

the dynamical behaviour of the system. Recently, a paper on simplified seismic analysis procedures for elevated cylindrical

tanks considering fluid–structure–soil interaction by different models was reported by Livao�glu and Do�gangün (2006).

Moreover, Livao�glu and Do�gangün (2007) investigated the embedment effects on the seismic response of fluid–elevated

tank–foundation–soil systems in which the fluid–structure interaction was taken into account using a Lagrangian fluid FE

approximation. The seismic performance of elevated cylindrical tanks damaged during the 1999 Kocaeli earthquake in

Turkey analyzed by dynamical analysis using a simplified three-mass model were reported by Sezen et al. (2008).

For the particular case of the dynamical behaviour of elevated spherical tanks under lateral excitation, only a few

works have been found. Drosos et al. (2005) investigated numerically the seismic response of a typical spherical liquid

storage tank equipped with a nonlinear viscous bracing system. In order to quantify the response reduction due to

seismic isolation, a number of parametric nonlinear time-history analyses on a simplified Housner model of a typical

sphere equipped with different types of isolation systems (lead rubber bearings, LRB, and high damping rubber

bearings, HDRB) have been carried out by Bergamo et al. (2006). On a similar simplified model, a retrofit design

scheme utilizing energy-dissipating braces instead of the existing ones has been proposed by Castellano et al. (2006).

Karamanos et al. (2006) proposed a methodology based on a ‘‘convective-impulsive’’ decomposition of the liquid-vessel

motion and a semi-analytical solution of sloshing in non-deformable containers by which the seismic forces can be

estimated. Additionally, the effects of the support structure flexibility are also considered.

Because most of the investigations on the dynamical behaviour, taking account the sloshing of spherical liquid

containers are numerical, special attention must be paid to experimental studies which are essential to validate

analytical and numerical formulations. Thus, the main objective of this paper is to gain insight in the physical response

of elevated spherical tanks, with emphasis in the frequencies and mode shape changes due to the stepwise increase in the

liquid level. The major interest is to study the changes in frequencies and mode shapes which are principally excited by
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horizontal base motions, disregarding specific modes of the liquid and shell (circumferential wavy patterns). The natural

frequencies of the system in the range of 1–5 Hz for different water levels were determined by free vibration tests with

small vibration amplitudes. Also, by means of a linear steady-state harmonic analysis, the frequencies and mode shapes

were computed with a FE model. The agreement between numerical and experimental results is excellent.

2. Dynamic tests

2.1. Case study

Sometimes, the comparison of numerical results obtained with different theories leads to a dilemma and another

point of view is necessary to resolve the differences. As pointed out in Section 1, experimental evidence on the vibration

of elevated spherical tanks is rather scarce in the literature. Therefore, a series of free vibration tests concerning this

structural typology were carried out.

The plastic spherical shells tested have a radius R=81.3 mm, wall thickness e=3 mm and mass density

rs=980 kg/m3 (see Fig. 1). It was mentioned before that it was not necessary to include the flexibility of the shell (shell

wavy modes), because this study emphasizes the behaviour of the structure as a whole. The sphere is supported by two

legs with a length L=260 mm, a cross-section of 3� 35 mm2, and the following material characteristics: Young’s

modulus E=2.35 GPa, Poisson ratio v=0.3 and mass density rl=980 kg/m3. The contained liquid is water with a

density of 1000 kg/m3 and bulk modulus of 2.25 GPa. The legs were clamped at the base. The dimensions of the model

are according to the available laboratory equipment (instrumentation, anchorage systems, etc.).

2.2. Experimental set-up and instrumentation

In order to determine the natural frequencies, free vibration tests were conducted. The structure was excited by two

different means, an impact on the base of the structure and an initial displacement on the equator of the sphere. For

each liquid level, four time histories of the structural response on the equator of sphere were measured by means of a

PCB Piezotronics capacitive accelerometer (700 mV/g). A data acquisition board Computerboards PCM-DAS16D/16

of 16 bit of resolution and a maximum conversion time of 10 ms (100 kHz) was mounted on a notebook computer in

order to record and process the signals by means of the program HP VEE (1998). The signals were recorded with a total

number of points, N=10 000 and sampling rate, n=500 sps. An algorithm to obtain and process the data was

programmed in the environment HP VEE (1998) and the spectral density (spectrum) of the signals was estimated using

the Welch’s method (Ewins, 2000).
Fig. 1. Spherical container: (a) sketch; dimensions in mm and (b) photograph.
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2.3. Dynamical response and experimental results

A total of 16 free vibration tests were conducted at eight gradually increasing water surface levels defined by the ratio

between height of the free surface of water and radius of the container, from H/R=0 (empty) to H/R=2 (full) (see

Table 1). A general view of the average natural frequencies measured in the range of 1–5 Hz (peaks of spectrum) for

each water level is shown in Fig. 2. The dependence of resonance frequencies on the container filling is shown in Fig. 3.

In the range of 1–5 Hz, Figs. 2 and 3 provide valuable evidence on the influence of rising liquid level on the natural

frequencies.

For an empty container, only one frequency of 4.8 Hz was identified corresponding to a structural mode shape, as

depicted in Fig. 2. Up to liquid filling of 20%, (H/R=0.58), there is a major natural frequency that dominates the

dynamical behaviour and it is mostly structural. From a filling of 10%, two lower frequencies appear which became

more important as the liquid level increases. The intermediate frequency seems to correspond most to a sloshing liquid

mass, because it is important for around half-full tank when the free liquid surface has maximum area and it disappears

for an empty and full container. Between 15% and 70% filling (H/R=0.49 and 1.3, respectively) the dynamical

behaviour is characterized by three resonant frequencies. This feature shows that the sloshing depends strongly on the

container shape (Patkas and Karamanos, 2007) and it confirms that, for elevated spherical containers, at least three

mode shapes are necessary to describe the free vibration response, unlike the two mode shapes used in cylindrical
Fig. 2. Spectrum of measured free vibration response, for 8 water surface levels.

Fig. 3. Natural frequencies in the range of 1–5 Hz for 8 water surface levels.
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containers (Housner, 1963; Tedesco et al., 1987; Cho et al., 2001). However, from about a water level H/R=0.8 (35%

filling) the highest frequency is of less importance than the others. In relatively high water surface level (H/R=1.3 or

70% filling), the highest frequency disappears; finally, when the container is full, the only frequency that remains is the

lowest one at 1.2 Hz, corresponding again to a structural mode shape similar to a solid body in which the sphere

contains the total coupled mass of liquid with no sloshing.

It is important to note that, due to the interaction between fluid and structure, the resonant frequency dependency on

the fluid level has a particular characteristic as shown in Fig. 3. In the range of interest, the lower frequency decreases in

a uniform way as the fluid level increases, whereas the highest frequency (‘‘structural’’ frequency) displays a stepwise

profile with an important drop between levels of 10% and 35% filling due to a strong coupling of liquid and structure.
3. Numerical study

3.1. FE model

Fluid–structure interaction can be considered using different approaches such as simplified methods with Housner’s

two-mass representation (Housner, 1963), multi-mass representation (Bauer, 1964), added mass in a ‘‘solid’’ Finite

Element Model (FEM), and provisions of the design codes (Eurocode-8, 2003, API 650, 1998 or ACI 350.3, 2001). A

comparison and evaluation of these methods are presented by Livao�glu and Do�gangün (2006). An important study on

mechanical systems modelling for fluid–structure interaction was published by Axisa and Antunes (2007). For an

exhaustive analysis and more complex models incorporating Lagrangian (Bennet, 2006), Eulerian (Angrand, 1985), and

Lagrangian–Eulerian approaches in Finite Element Method formulations should be used (Zienkiewicz and Bettes, 1978;

Wilson and Khalvati, 1983; Wang, 2008; Donea and Huerta, 2002). In this study, a linear harmonic response analysis,

performed in the ANSYS (1992) Finite Element program, from a detailed model (Fig. 4) including the effect of liquid–

structure interaction based on a Lagrangian approach is adopted. The spherical shell is modelled by four-node shell

elements with six degrees of freedom per node and the supporting columns by two-node frame elements with six degrees

of freedom per node. The eight-node solid–fluid element with three degrees of freedom per node has been chosen to

model the inviscid liquid contained in the sphere without net flow rate. The finite element formulation allows

acceleration effects such as sloshing. In order to satisfy the continuity conditions between the fluid and solid shell at the

spherical boundary, the ‘‘coincident’’ nodes of the fluid and shell elements are constrained to be coupled in the direction

normal to the interface, while relative motions are allowed to occur in the tangential directions.

3.2. Steady-state harmonic response analysis

In order to obtain the modal shapes and eigenfrequencies, two alternatives are normally used, modal (eigenvalue)

analysis and steady-state harmonic response analysis. In this case, the first procedure results in time-consuming and

computationally expensive analysis due to a lot of strictly liquid modes, which make difficult to search the modes where

the fluid is strongly coupled with the structure; therefore, the latter analysis was adopted. The fluid–structure system

analysis, was based on the evaluation of the Accelerance Function (i.e., the magnitude of Frequency Response

Function—FRF) defined as the ratio between the acceleration at a node located at the equator of the sphere and the

force at the base, both parameters computed along the X-axis (see Fig. 1). In this way, only the concerned frequencies

and modal shapes in the range of 1–5 Hz were determined. Fig. 5 shows the numerical FRF, where the peaks

correspond to the resonance eigenfrequencies of the system for the same water surface levels considered in Section 2.3.

The agreement achieved between numerical (Fig. 5) and experimental (Fig. 2) spectra is very good.

For an elevated spherical tank with 35.6% and 71.1% liquid filling, Figs. 6 and 7 show the three modal shapes. It is

important to note that the corresponding modes for different liquid levels from H/R=0.55 (18% filling) to H/R=1.6

(90% filling) preserve similar profiles.

An analysis of the mode shapes of the dynamical system in the range of 1–5 Hz (Figs. 6 and 7) shows that: the first

vibration mode shape corresponding to the lowest frequency displays a strong coupling between the structure and most

of the liquid mass due to the oscillating ‘‘pendular’’ motion in-phase with the structure, in which the free surface

remains plane. This mode acquires importance in the dynamical behaviour of the system as the water levels increases

from about 15% filling, being most important when the container is nearly full. The second mode shape (intermediate

frequency) shows a marked antisymmetric slosh wave, which has a positive peak at one side and a negative peak

at the other. The slosh wave and structure move out-of-phase, i.e., if the positive peak grows up to the left, the

structure moves to the right and viceversa. In nearly half-full spherical containers, when the free liquid surface has

maximum area, this mode has considerable participation on the free vibration structural response, and it is
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Fig. 4. Finite Element model.
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insignificant for extreme conditions (nearly full and empty container). The third mode shape, mostly structural

(highest frequency) makes an important contribution to the free vibration response up to liquid levels of around a

filling of 35%.

Summarizing, for a container empty and up to liquid filling of 20% the third vibration mode (highest frequency) is

mostly structural and it dominates the dynamical behaviour. The small liquid mass moves as a pendulum out-of-phase

with the structure. When the container is around half-full, the second vibration mode (intermediate frequency) is the most

important. The lower liquid mass translates jointly to the structure with little pendular motion, and the upper liquid mass

presents a marked antisymmetric slosh wave. This mode shape is distinguished predominantly by a sloshing liquid mass.

An oscillating pendular motion of most of the liquid mass in-phase with the translation of the structure characterizes the

first mode shape (lowest frequency). This vibration mode controls the free response from a filling larger than 80%.

Note that, unlike the impulsive (bulging) mass concept for cylindrical containers (Housner, 1963; Tedesco et al., 1987;

Cho et al., 2001), in the case of spherical containers most of the lower liquid mass does not move rigidly attached to the
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Fig. 5. FRF from FE model, for 8 water surface levels of spherical container.

Fig. 6. Mode shapes for water surface level of H/R=0.81 (35.6% filling): (a) 1.7 Hz; (b) 3.8 Hz; (c) 4.2 Hz.
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container walls; but it oscillates as a pendulum in-phase or out-of-phase with the translation motion of the structure. In

this context, it would be incorrect to name this mass as impulsive because it involves both translational and pendular

motions. Then, in connection with vibration of the spherical container system, in this paper the following names are

proposed for the three characteristic masses and associated frequencies: structural (translational), sloshing (convecting)

and pendular.

From the above discussion it is clear that to describe the dynamical behaviour of the system, by a simplified

mechanical model, three essentially independent mass-motions are necessary: translation, sloshing and pendular motions,

and therefore a minimum of three degrees of freedom should be considered.

4. Sloshing effects

In order to investigate the effect of sloshing on the structural response of this type of containers, two case studies were

analyzed: (a) the contained liquid, in this case water, was considered with its true properties (bulk modulus, density and

boundary conditions as indicated above) and (b) the mass of the liquid was assumed as a rigid solid block (model

without sloshing, but the same boundary conditions). The FRF of both cases, with a container 53% full (liquid level

H/R=1.044) are shown in Fig. 8. It was found that, if the sloshing effect is ignored (case (b)), the two highest

frequencies do not appear and the lower one suffers a significant shift (from 1.65 to 2.1 Hz).
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Fig. 7. Mode shapes for water surface level of H/R=1.29 (71.1% filling): (a) 1.6 Hz; (b) 3.3 Hz; (c) 4.15 Hz.

Fig. 8. Sloshing effects. Container filling of 53%.
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In view of the explanations given in Sections 2.3, 3.2 and 4, it seems clear to infer that, although for design purposes

of cylindrical containers, in which the sloshing is ignored or partially represented, a simplified single-mass or a two-

lumped-mass model is satisfactory (Sezen et al., 2008), for thorough dynamical analysis or for damage assessment of

elevated spherical container this hypothesis is not valid and more elaborate mechanical models that depict the overall

dynamical behaviour of the system in a wide range of liquid surface levels are necessary. A similar statement was

previously suggested by Livao�glu and Do�gangün (2006).
5. Comparison of experimental and numerical results

The natural frequencies evaluated from the measured free vibration response and the corresponding ones computed

from FE model, for increasing water level H/R, are shown in Fig. 9.
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Fig. 9. The experimental (-�-) and numerical (-m-) natural frequencies in the range of 1–5 Hz for 8 water surface levels.

Table 1

Comparison between experimental and numerical eigenfrequencies.

Volume of sphere=2250 cm3; radius=81.3 mm

H/R Filling (%) Mode Frequency (Hz)

Experimental Model Diff. (%)

0.0 0.0 (empty) 1 – – –

2 – – –

3 4.9 4.9(4.89)a 0.00(0.20)

0.37 8.9 1 1.782 1.7 �4.60

2 4.225 – –

3 4.9 4.9 0.00

0.54 17.8 1 1.758 1.8 2.40

2 4.10 – –

3 4.75 4.8 1.05

0.81 35.6 1 1.685 1.7 0.90

2 3.833 3.8 �0.86

3 4.42 4.4 �0.45

1.044 53.3 1 1.585 1.7 7.25

2 3.54 3.5 �1.13

3 4.3 4.2 �2.30

1.29 71.1 1 1.45 1.5 3.45

2 3.296 3.2 �2.90

3 4.2 4.2 0.00

1.59 88.9 1 1.343 1.4 4.24

2 3.17 3.1 �2.33

3 – – –

2.0 100 (full) 1 1.19 1.3 (1.16)a 9.24 (2.50)

2 – – –

3 – – –

aFrequencies calculated by Eq. (1).

O. Curadelli et al. / Journal of Fluids and Structures 26 (2010) 148–159156
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Fig. 9 shows a slight difference between experimental and numerical values of the natural frequencies for each liquid

level in the range of 1–5 Hz. A more precise comparison can be made by the local maximum values (peaks) of spectra as

shown in Table 1. Insignificant values (very low peaks) are not indicated. The relative differences included in Table 1 are

defined by dij=100(fi�fj)/fi, where i corresponds to the measured frequencies and j to the frequencies determined by

the numerical model. The greatest differences are within 10% and the average difference is 2.5%. The agreement

between the experimental and numerical results is very good.

Because the fundamental mode shapes of the empty and full container cases are of the ‘‘shear type’’, the natural

frequencies could be easily approximated using the following expression (Den Hartog, 1956):

fe ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke

me þ 0:23ml

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Po

Pcr

� �s
; ð1Þ

with

ke ¼ 12
EI

L3
: ð2Þ

In the equation above, fe is the fundamental frequency of empty container, ke the ‘‘shear’’ stiffness of one leg, me the

empty spherical container mass, ml the mass of the legs, EI the flexural stiffness, L the length of the legs, Po the leg axial

load, and Pcr the first elastic critical load.

The agreement between analytical and measured fundamental eigenfrequencies for empty and full container cases is

very good as showed in Table 1.
6. Conclusions

The present paper investigates the overall dynamical response of coupled fluid–structure systems of elevated spherical

tanks subjected to horizontal base motion. First, impact tests (with small vibration amplitudes) on an experimental

model were performed, identifying the natural frequencies of the vibration modes that contribute to the dynamical

response in the range of 1–5 Hz, for different liquid levels. Next, a numerical model that takes into account the coupling

between fluid and structure was developed and validated against the experimental results. A very good agreement

between experimental and numerical results was obtained.

As expected, the frequencies of the partially fluid-filled spherical container decrease with increasing fluid level. Due to

the interaction between fluid and structure, the dependency of the natural frequencies on the fluid level has a particular

characteristic. The lower measured frequencies, in the range of interest, decrease in a uniform way as the fluid level

increases, whereas the highest frequency (structural frequency) displays a stepwise profile with an important drop

between the levels of 10% and 35% filling.

The results indicate that sloshing has a significant effect on the dynamical characteristics of the system; thus, in cases

where an accurate dynamical analysis is required, the sloshing should be considered. Moreover, it is clear that, systems

such as elevated spherical tanks display three essentially independent mass-motions due to the impulsive mass is not

rigidly attached to container walls as it is assumed in cylindrical containers. Therefore, a simplified model of two

lumped-masses is insufficient to describe the overall dynamical behaviour of the system for a wide range of liquid levels,

and a minimum of three masses (three degrees of freedom) should be considered. Names for these three mass have been

proposed in this paper.

These conclusions help to understand the changes in the dynamical characteristics caused by container shape and

fluid level and give rise to the development of simplified mechanical lumped-mass models and damage structural

assessment methods based on frequency changes.
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